TIRISTORES
OBJETIVO
El objetivo de este Blog es proporcionar herramientas de conocimiento de los tiristores en sus diferentes aplicaciones así como sus características y los distintos tipos de tiristores que existen.
TEMARIO
- Introducción
- Definición de tiristor
- Aplicaciones de los tiristores
- El DIAC características y aplicaciones
- El TRIAC características y aplicaciones
- El SCR características y aplicaciones
- Ejemplos del uso de tiristores
- Resumen
- Cuestionario
- Bibliografía
INTRODUCCION
Los Tiristores constituyen una familia de dispositivos que pueden tomar diferentes nombres y características, pero donde todos los elementos que la componen se basan en el mismo
principio de funcionamiento.
Constructivamente son dispositivos de 4 capas semiconductoras N-P-N-P y cuya principal diferencia con otros dispositivos de potencia es que presentan un comportamiento biestable. Su construcción se debe en su origen a General Electric en 1957 y la comercialización general comienza hacia 1960.
Los Tiristores pueden tener 2, 3 o 4 terminales, y ser de conducción unilateral (un solo sentido) o bilateral (en ambos sentidos). Ante una señal adecuada pasan de un estado de bloqueo al de conducción, debido a un efecto de realimentación positiva. El pasaje inverso, de conducción a bloqueo se produce por la disminución de la corriente principal por debajo de un umbral. Funcionan como llaves, presentando dos estados posibles de funcionamiento:
- No conducción (abierto)
- Conducción (cerrado)
La estructura base común consistente en múltiples capas P y N alternadas, puede presentar algunas variaciones en los distintos el miembros de la familia, particularizando su
funcionamiento. La carga es aplicada sobre las múltiples junturas y la corriente de disparo es inyectada en una de ellas.
Los tiristores pueden tomar muchas formas y nombres, pero tienen en común que todos ellos son llaves de estado sólido capaces de bloquear tensiones directas e inversas hasta el momento que son disparados. Al dispararlos se convierten en dispositivos de baja impedancia, conduciendo la corriente que fije el circuito exterior, permaneciendo indefinidamente en conducción mientras la corriente no disminuya por debajo de un cierto valor. Una vez disparado y establecida la corriente principal, la corriente de disparo puede ser removida sin alterar el estado de conducción del tiristor. Análogamente una vez recuperada la capacidad de bloqueo, ésta se mantiene sin otro requisito hasta la ocurrencia de un nuevo disparo.
Estas características transforman al tiristor en un elemento muy útil en aplicaciones de control. Comparado con llaves mecánicas, el tiristor tiene un elevado ciclo de servicio junto con relativamente muy bajos tiempos de encendido y apagado. Por ser dispositivos cuyo funcionamiento se basa en dos tipos de portadores, participan de las excelentes características de conducción, pero cono tiempos de conmutación considerables. Debido a su acción regenerativa, y baja resistencia una vez disparado, los tiristores son muy utilizados en aplicaciones de control de potencia, control de motores e inversores que impliquen muy elevadas corrientes y tensiones (miles de amperes y voltios) pero a frecuencias bajas.
Los tiristores son elementos constructivamente robustos, y al igual que en todo dispositivo
de potencia, en su utilización no deben ser superados los valores máximos permitidos por el fabricante. Sin embargo, además de las consideraciones habituales, en los tiristores deben tenerse en cuenta consideraciones particulares al prever su utilización en una aplicación específica. Existen dos parámetros propios de los tiristores que deben considerarse al momento de su aplicación, y que no pueden ser excedidos, sin afectar la duración de su vida útil o directamente destruirlos. Estos parámetros característicos de los tiristores son la velocidad de crecimiento de la tensión en condiciones de bloqueo (dv/dt) y el crecimiento de la corriente principal en el momento del encendido (di/dt).
DEFINICIÓN DE TRANSISTOR
El Tiristor
Se denominan tiristores a todos aquellos componentes semiconductores con dos estados estables cuyo funcionamiento se basa en la realimentación regenerativa de una estructura PNPN. Existen varios tipos dentro de esta familia, de los cuales el más empleado con mucha diferencia es el rectificador controlado de silicio (SCR), por lo que suele aplicársele el nombre genérico de tiristor.
Símbolo del Tiristor
Es un componente con dos terminales principales, ánodo y cátodo y uno auxiliar para disparo o puerta. Se puede decir que se comporta como un diodo rectificador con iniciación de la conducción controlada por la puerta: como rectificador, la conducción no es posible en sentido inverso, pero sí en sentido directo. Sin embargo, a diferencia de los diodos, el tiristor no conduce en sentido directo hasta que no se aplica un pulso de corriente por el terminal de puerta. El instante de conmutación (paso de corte a conducción), puede ser controlado con toda precisión actuando sobre el terminal de puerta, por lo que es posible gobernar a voluntad el paso de intensidades por el elemento, lo que hace que el tiristor sea un componente idóneo en Electrónica de Potencia, ya que es un conmutador casi ideal, rectificador y amplificador a la vez.En la siguiente figura se pueden apreciar el símbolo, estructura y esquema equivalente del tiristor de potencia.
Estructura interna del Tiristor | |
Características estéticas:
En la dirección directa el tiristor también bloquea la tensión hasta que llega a la ruptura de conducción en VBO El tiristor estará conduciendo mientras la corriente a su través sea mayor que un valor llamado corriente de enclavamiento o de enganche, IBO, definida como la corriente de ánodo mínima que hace bascular al tiristor del estado de bloqueo al estado de conducción.
Después, sus características son similares a las de un diodo, permaneciendo el componente en conducción mientras la corriente de ánodo a cátodo no caiga por debajo de un valor denominado corriente de mantenimiento IH. Por lo tanto, dentro de las características estáticas del tiristor, y dependiendo de la tensión que se aplique entre ánodo y cátodo, podemos distinguir tres zonas que dan lugar a los dos estados estables que posee: bloqueo y conducción (cebado).
1. Vak < 0 (zona de bloqueo inverso). Dicha condición corresponde al estado de no conducción en inversa, comportándose como un diodo.
2. Vak > 0 sin disparo (zona de bloqueo directo). El tiristor se comporta como un circuito abierto hasta alcanzar la tensión de ruptura directa.3. Vak > 0 con disparo (zona de conducción). Se comportará como un cortocircuito, si una vez ha ocurrido el disparo, por el SCR circula una corriente superior a la corriente de enclavamiento. Una vez en conducción, se mantendrá si el valor de la corriente ánodo-cátodo es superior a la corriente de mantenimiento.
Es muy importante que, tal y como se ha comentado, si un tiristor está polarizado en directa, la inyección de una corriente de puerta al aplicar un voltaje positivo entre G y K activará al tiristor. Conforme aumenta la IG se reduce el voltaje de bloqueo directo, tal y como se muestra en la curva estática anteriormente señalada. Sin embargo, una vez empieza a conducir, es fijado al estado de ON, aunque la corriente de puerta desaparezca, no pudiendo ser cortado por pulso de puerta. Solo cuando la corriente del ánodo tiende a ser negativa, o inferior a un valor umbral, por la influencia del circuito de potencia, se cortará el tiristor.
Características dinámicas del Tiristor
La característica de conmutación de un tiristor determina sus pérdidas de conmutación y su frecuencia máxima de funcionamiento, de la misma forma que se hizo para el transistor. En particular, para el caso del tiristor las curvas de conexión y desconexión presentan el siguiente comportamiento:
- Tiristor a conexión:La forma de la curva de conexión es muy similar a la del transistor de potencia, donde la corriente a través del componente aumenta según disminuye la tensión ánodo-cátodo. El tiempo para alcanzar una conducción del 10%, medido desde la aplicación de la excitación de puerta se denomina tiempo de retraso o retardo (td), y aquel entre el 10% y el 90% es el tiempo de subida (tr). La suma del tiempo de retardo y el tiempo de subida es el tiempo de conexión del tiristor o tiempo de encendido (ton = td + tr) . El tiempo de conexión se reduce si el pulso de puerta que se utiliza es de subida abrupta y la potencia de excitación se incrementa.
- Tiristor a corte. Si el circuito externo fuerza una reducción muy brusca de la intensidad del ánodo e intenta la conducción en sentido inverso, los portadores de las uniones no pueden reajustarse, por tanto hay un tiempo de retraso por almacenamiento donde se comporta como un cortocircuito conduciendo en sentido contrario al estar polarizado positivamente, produciendo un pico de corriente IRR. El tiempo entre el inicio de la corriente de recuperación inversa y cuando ha caído por debajo del 25% de su valor se denomina tiempo de recuperación inversa trr. Cuando ha disminuido la concentración, la puerta recupera su capacidad de gobierno, pudiendo aplicar tensión di- recta sin riesgo de cebado. A este tiempo se le denomina tiempo de recuperación de puerta tgr. La duración del proceso de corte es toff = tg = tq = trr + tgr, tal y como se puede observar en detalle en la siguiente figura, mucho menos idealizada que la anterior. A partir de esta figura puede observarse que tq es el menor tiempo que debe transcurrir entre que se invierte la intensidad por el ánodo y el instante en que aplicamos tensión ánodo-cátodo positiva sin que entre en conducción.
APLICACIONES DEL TRANSISTOR
Normalmente son usados en diseños donde hay corrientes o voltajes muy grandes, también son comúnmente usados para controlar corriente alterna donde el cambio de polaridad de la corriente revierte en la conexión o conexión del dispositivo. Se puede decir que el dispositivo opera de forma síncrona cuando, una vez que el dispositivo está abierto, comienza a conducir corriente en fase con el voltaje aplicado sobre la unión cátodo-ánodo sin la necesidad de replicación de la modulación de la puerta.
En este momento el dispositivo tiende de forma completa al estado de encendido. No se debe confundir con la operación simétrica, ya que la salida es unidireccional y va solamente del cátodo al ánodo, por tanto en sí misma es asimétrica.
Los Tiristores pueden ser usados también como elementos de control en controladores accionados por ángulos de fase, esto es una modulación por ancho de pulsos para limitar el voltaje en corriente alterna.
En circuitos digitales también se pueden encontrar tiristores como fuente de energía o potencial, de forma que pueden ser usados como interruptores automáticos magneto-térmicos, es decir, pueden interrumpir un circuito eléctrico, abriéndolo, cuando la intensidad que circula por él se excede de un determinado valor. De esta forma se interrumpe la corriente de entrada para evitar que los componentes en la dirección del flujo de corriente queden dañados.
El Tiristor también se puede usar en conjunto con un diodo Zener enganchado a su puerta, de forma que cuando el voltaje de energía de la fuente supera el voltaje zener, el tiristor conduce, acortando el voltaje de entrada proveniente de la fuente a tierra, fundiendo un fusible. La primera aplicación a gran escala de los tiristores fue para controlar la tensión de entrada proveniente de una fuente de tensión, como un enchufe, por ejemplo.
A comienzo de los ’70 se usaron los tiristores para estabilizar el flujo de tensión de entrada de los receptores de televisión en color.
Se suelen usar para controlar la rectificación en corriente alterna, es decir, para transformar esta corriente alterna en corriente continua (siendo en este punto los tiristores onduladores o inversores), para la realización de conmutaciones de baja potencia en circuitos electrónicos.
Otras aplicaciones comerciales son en electrodomésticos (iluminación, calentadores, control de temperatura, activación de alarmas, velocidad de ventiladores), herramientas eléctricas (para acciones controladas tales como velocidad de motores, cargadores de baterías), equipos para exteriores (aspersores de agua, encendido de motores de gas, pantallas electrónicas...) En fotografía el primer uso del tiristor, se dio en el flash electrónico, en los años 80. Antes de esto, cuando se disparaba un flash, este botaba toda la carga acumulada, necesitando 10 o más segundos para recargar completamente.
Cuando se usaban combinados con el modo automático de exposición, el dispositivo solo ocupa la proporción de carga que necesita para esa exposición, lo que permitió acelerar increíblemente los tiempos de recarga. En la actualidad estos flashes permiten disparar 3 o 4 veces por segundo, además de hacerlo con una gran precisión en la cantidad de luz emitida.
EL DIAC Caracteristicas y Aplicaciones
El DIAC (Diodo para Corriente Alterna) es un dispositivo semiconductor de dos conexiones. Es un diodo bidireccional simétrico (sin polaridad) con dos electrodos principales: MT1 y MT2, y ninguno de control. Es un componente electrónico que está preparado para conducir en los dos sentidos de sus terminales, por ello se le denomina bidireccional, siempre que se llegue a su tensión de cebado o de disparo que conduce la corriente sólo tras haberse superado su tensión de disparo, y mientras la corriente circulante no sea inferior al valor característico para ese dispositivo.
El comportamiento es fundamentalmente el mismo para ambas direcciones de la corriente. La mayoría de los DIAC tienen una tensión de disparo de alrededor de 30 V. En este sentido, su comportamiento es similar a una lámpara de neón.
El DIAC se comporta como dos diodos zener conectados en serie, pero orientados en formas opuestas. La conducción se da cuando se ha superado el valor de tensión del zener que está conectado en sentido opuesto. El DIAC normalmente no conduce, sino que tiene una pequeña corriente de fuga. La conducción aparece cuando la tensión de disparo se alcanza. Cuando la tensión de disparo se alcanza, la tensión en el DIAC se reduce y entra en conducción dejando pasar la corriente necesaria para el disparo del SCR o TRIAC. Se utiliza principalmente en aplicaciones de control de potencia mediante control de fase.
En la curva característica se observa que cuando - +V o - V es menor que la tensión de disparo, el DIAC se comporta como un circuito abierto - +V o - V es mayor que la tensión de disparo, el DIAC se comporta como un cortocircuito
Sus principales características son:
- Tensión de disparo
- Corriente de disparo
- Tensión de simetría (ver gráfico anterior)
- Tensión de recuperación
- Disipación de potencia (Los DIACs se fabrican con capacidad de disipar potencia de 0.5 a 1 watt.)
Características y aplicaciones:
Se emplea normalmente en circuitos que realizan un control de fase de la corriente del triac, de forma que solo se aplica tensión a la carga durante una fracción de ciclo de la alterna. Estos sistemas se utilizan para el control de iluminación con intensidad variable, calefacción eléctrica con regulación de temperatura y algunos controles de velocidad de motores.
Hasta que la tensión aplicada entre sus extremos supera la tensión de disparo VBO; la intensidad que circula por el componente es muy pequeña. Al superar dicha tensión la corriente aumenta bruscamente y disminuyendo, como consecuencia, la tensión anterior. La aplicación más conocida de este componente es el control de un triac para regular la potencia de una carga.
EL TRIAC Caracteristicas y Aplicaciones
Un TRIAC o Triodo para Corriente Alterna es un dispositivo semiconductor, de la familia de los transistores. La diferencia con un tiristor convencional es que éste es unidireccional y el TRIAC es bidireccional.
De forma coloquial podría decirse que el TRIAC es un interruptor capaz de conmutar la corriente alterna.
Su estructura interna se asemeja en cierto modo a la disposición que formarían dos SCR en antiparalelo.
Posee tres electrodos: A1, A2 (en este caso pierden la denominación de ánodo y cátodo) y puerta. El disparo del TRIAC se realiza aplicando una corriente al electrodo puerta.Cuando el triac conduce, hay una trayectoria de flujo de corriente de muy baja resistencia de una terminal a la otra, dependiendo la dirección de flujo de la polaridad del voltaje externo aplicado. Cuando el voltaje es mas positivo en MT2, la corriente fluye de MT2 a MT1 en caso contrario fluye de MT1 a MT2. En ambos casos el triac se comporta como un interruptor cerrado. Cuando el triac deja de la polaridad del voltaje externo aplicado por tanto actúa como un interruptor conducir no puede fluir corriente entre las terminales principales sin importar abierto.
Debe tenerse en cuenta que si se aplica una variación de tensión importante al triac (dv/dt) aún sin conducción previa, el triac puede entrar en conducción directa. Su versatilidad lo hace ideal para el control de corrientes alternas.
Una de ellas es su utilización como interruptor estático ofreciendo muchas ventajas sobre los interruptores mecánicos convencionales y los relés.
Funciona como switch electrónico y también a pila. Se utilizan TRIACs de baja potencia en muchas aplicaciones como atenuadores de luz, controles de velocidad para motores eléctricos, y en los las precauciones necesarias para asegurarse que el TRIAC se apaga correctamente sistemas de control computarizado de muchos elementos caseros. No obstante, cuando se utiliza con cargas inductivas como motores eléctricos, se deben tomar estabilidad en la actualidad su uso es muy reducido. al final de cada semiciclo de la onda de Corriente alterna. Debido a su poca
Características y aplicaciones:
Puede verse una aplicación práctica de gobierno de un motor de c.a. mediante un triac(TXAL228).
La señal de control (pulso positivo) llega desde un circuito de mando exterior a la puerta inversora de un ULN2803 que a su salida proporciona un 0 lógico por lo que circulará corriente a través del diodo emisor que hace conducir al fototriac a través de R2 tomando la tensión del ánodo del perteneciente al MOC3041 (opto acoplador).
Dicho diodo emite un haz luminoso excitar al triac principal que pasa al estado de conducción provocando el triac de potencia. Este proceso produce una tensión de puerta suficiente para arranque del motor.
Debemos recordar que el triac se desactiva automáticamente cada vez que la corriente pasa por cero, es decir, en cada semiciclo, por lo que es necesario redisparar el triac en cada semionda o bien mantenerlo con la señal de control activada durante el tiempo que consideremos oportuno. Como podemos apreciar, entre los terminales de salida del triac se sitúa una red RC cuya misión es proteger al semiconductor de potencia, de las posibles sobrecargas que se puedan producir por las corrientes inductivas de la carga, evitando además cebados no deseados.
La aplicación de los Triacs, a diferencia de los tiristores, se encuentra básicamente en corriente alterna. Su curva característica refleja un funcionamiento muy parecido al del tiristor apareciendo en el primer y tercer cuadrante del sistema de ejes. Esto es debido a su bidireccionalidad. La principal utilidad de los triacs es como regulador de potencia entregada a una carga, en corriente alterna. El encapsulado del triac es idéntico al de los tiristores.
EL SCR Caracteristicas y Aplicaciones
Los rectificadores controlados de silicio SCR se emplea como dispositivo de control.
El rectificador controlado de silicio SCR, es un semiconductor que presenta dos estados estables: en uno conduce, y en otro está en corte (bloqueo directo, bloqueo inverso y conducción directa).
El objetivo del rectificador controlado de silicio SCR es retardar la entrada en conducción del mismo, ya que como se sabe, un rectificador controlado de silicio SCR se hace conductor no sólo cuando la tensión en sus bornes se hace positiva (tensión de ánodo mayor que tensión de cátodo), sino cuando siendo esta tensión positiva, se envía un impulso de cebado a puerta. El parámetro principal de los rectificadores controlados es el ángulo de retardo, a.
Como lo sugiere su nombre, el SCR es un rectificador, por lo que pasa corriente sólo durante los semiciclos positivos de la fuente de ca.
El semiciclo positivo es el semiciclo en que el ánodo del SCR es más positivo que el cátodo. Esto significa que el SCR no puede estar encendido más de la mitad del tiempo. Durante la otra mitad del ciclo, la polaridad de la fuente es negativa, y esta polaridad negativa hace que el SCR tenga polarización inversa, evitando el paso de cualquier corriente a la carga. Rectificador controlado de silicio SCR (silicon controlled rectifier) Es un dispositivo semiconductor biestable formado por tres uniones pn con la disposición pnpn Está formado por tres terminales, llamados Ánodo, Cátodo y Puerta. La conducción entre ánodo y cátodo es controlada por el terminal de puerta. Es un elemento unidireccional (sentido de la corriente es único), conmutador casi ideal, rectificador y amplificador a la vez.
El SCR se asemeja a un diodo rectificador pero si el ánodo es positivo en relación al cátodo no circulará la corriente hasta que una corriente positiva se inyecte en la puerta. Luego el diodo se enciende y no se apagará hasta que no se remueva la tensión en el ánodo-cátodo, de allí el nombre rectificador controlado. Funcionamiento básico del SCR El siguiente gráfico muestra un circuito equivalente del SCR para comprender su funcionamiento. Al aplicarse una corriente IG al terminal G (base de Q2 y colector de Q1), se producen dos corrientes: IC2 = IB1. IB1 es la corriente base del transistor Q1 y causa que exista una corriente de colector de Q1 (IC1) que a su vez alimenta la base del transistor Q2 (IB2), este a su vez causa más corriente en IC2, que es lo mismos que IB1 en la base de Q1. Este proceso regenerativo se repite hasta saturar Q1 y Q2 causando el encendido del SCR Operación controlada del rectificador controlado de silicio Como su nombre lo indica, el SCR es un rectificador construido con material de silicio con una tercera terminal para efecto de control. Se escogió el silicio debido a sus capacidades de alta temperatura y potencia.
En la región de conducción la resistencia dinámica el SCR es típicamente de 0.01 a 0.1 La resistencia inversa es típicamente de 100 ko más. Un SCR actúa a semejanza de un interruptor.
Cuando esta encendido (ON), hay una trayectoria de flujo de corriente de baja resistencia del ánodo al cátodo. Actúa entonces como un interruptor cerrado. Cuando está apagado (OFF), no puede haber flujo de corriente del ánodo al cátodo. Por tanto, actúa como un interruptor abierto. Dado que es un dispositivo de estado sólido, la acción de conmutación de un SCR es muy rápida.
Ejemplos del uso de Tiristores
- Control de velocidad de motores
El control de velocidad de los motores se ha realizado en base a SCR en mayor medida que en TRIAC. A primera vista, el TRIAC presenta mayores ventajas debido a su simetría, lo que le confiere ciertas ventajas frente al SCR que únicamente conduce en un semiperíodo. Sin embargo, el TRIAC tiene unas características dv/dt inadecuadas para el control de motores y es difícil la realización de circuitos de control simétricos. Por otra parte, el SCR puede conducir en todo el periodo si se rectifica la señal de red. Las figuras muestran dos ejemplos sencillos de control realizados a través de SCR de un motor universal y un motor de imán-permanente.
- Regulación de luz
Una de las aplicaciones más típicas de uso domestico es el regulador de luz. La figura muestra un esquema de este circuito basado en el TRIAC MAC218A de Motorola y cuyo control de disparo se realiza a través de un SBS. La resistencia R1+R2 carga el condensador C1 a través de la propia tensión de alimentación en alterna y cuando se alcanza la tensión de ruptura del SBS, este dispara el TRIAC haciendo circular la corriente por la carga (lámpara). El uso de TRIAC y SBS permite el control de potencia en semiperiodos positivos y negativos.
El ángulo de conducción se controla a través de la resistencia variable R1; contra mas pequeño sea su valor el ángulo de conducción será mayor, y viceversa. Las ecuaciones de funcionamiento del circuito son difíciles de extraer pero en la figura 183 se indican los valores típicos de los diferentes componentes. Los diodos, la resistencia de R4 y el condensador C2 actúan como elementos de protección.
- Circuito de control de calor con sensor de temperatura
El circuito de control de calor mostrado en la figura 186 ha sido concebido para controlar la temperatura de una habitación, bien utilizando una fuente de calor (por ejemplo, una resistencia eléctrica o un horno) o bien utilizando un ventilador (o cualquier dispositivo refrigerador).
El circuito de disparo se realiza a través de un UJT que introduce un ángulo de conducción de los TRIAC que va a depender de la temperatura de la habitación medida a través de una resistencia térmica (termistor) RT cuyo valor es de 2 kΩ a 25 °C; el rectificador de puente de diodos y el diodo zener 1N5250A alimentan a este circuito de disparo. R2 se ajusta para que el transistor bipolar 2N3905 este en corte a una temperatura dada.
Cuando el 2N3905 está en corte ninguna corriente carga el condensador C y, por consiguiente, el UJT y los TRIAC están cortados. Si el 2N3905 esta a ON, este carga el condensador C y dispara el UJT cuando alcanza la tensión VP.
El tiempo que tarda en alcanzar la tensión VP del UJT depende de RT. Un incremento en la temperatura disminuye el valor de RT, y por consiguiente, disminuye el valor de corriente de colector del transistor aumentando a su vez el tiempo de carga del condensador (disminuye el ángulo de conducción). Por el contrario, al disminuir temperatura aumenta el ángulo de conducción. El modo de operar con la temperatura se invierte si se intercambia RT con R2.
RESUMEN
Un Tiristor es uno de los tipos más importantes de los dispositivos semiconductores de potencia. Los tiristores se utilizan en forma extensa en los circuitos electrónicos de potencia. Se operan como conmutadores biestables, pasando de un estado no conductor a un estado conductor. Para muchas aplicaciones se puede suponer que los tiristores son interruptores o conmutadores ideales, aunque los tiristores prácticos exhiben ciertas características y limitaciones.
DIAC
Es un dispositivo semiconductor de dos conexiones llamados ánodo y cátodo. Es un diodo bidireccional disparable que conduce la corriente sólo tras haberse superado su tensión de disparo, y mientras la corriente circulante no sea inferior al valor característico para ese dispositivo. El comportamiento es fundamentalmente el mismo para ambas direcciones de la corriente. La mayoría de los DIAC tienen una tensión de disparo de alrededor de 30 V. En este sentido, su comportamiento es similar a una lámpara de neón.
SCR
Lo que hace al SCR especialmente útil para el control de motores en sus aplicaciones es que el voltaje de ruptura o de encendido puede ajustarse por medio de una corriente que fluye hacia su compuerta de entrada. Cuanto mayor sea la corriente de la compuerta, tanto menor se vuelve VBO. Si se escoge un SCR de tal manera que su voltaje de ruptura, sin señal de compuerta, sea mayor que el mayor voltaje en el circuito, entonces, solamente puede activarse mediante la aplicación de una corriente a la compuerta. Una vez activado, el dispositivo permanece así hasta que su corriente caiga por debajo de IH. Además, una vez que se dispare el SCR, su corriente de compuerta puede retirarse, sin que afecte su estado activo. En este estado, la caída de voltaje directo a través del SCR es cerca de 1.2 a 1.5 veces mayor que la caída de voltaje a través de un diodo directo-oblicuo común.
TRIAC
Es un dispositivo que se comporta como dos SCR conectados en contraposición, con una compuerta de paso común; puede ir en cualquier dirección desde el momento en que el voltaje de ruptura se sobrepasa. El voltaje de ruptura en un TRIAC disminuye si se aumenta la corriente de compuerta, en la misma forma que lo hace en un SCR, con la diferencia que un TRIAC responde tanto a los impulsos positivos como a los negativos de su compuerta. Una vez encendido, un TRIAC permanece así hasta que su corriente cae por debajo.
CUESTIONARIO
1.-¿Que es un transistor?
R= Es un componente electrónico constituido por elementos semiconductores que utiliza realimentación interna para producir una conmutación. Los materiales de los que se compone son de tipo semiconductor, es decir, dependiendo de la temperatura a la que se encuentren pueden funcionar como aislantes o como conductores.
R= Tiristor conmutado forzado, tiristor conmutado por línea, de abertura de compuerta (GTO), de conducción inversa (RCT), de inducción estática(SITH), de abertura de compuerta asistida (GATT), rectificador foto activado controlado por silicio (LASCR), tiristor abierto por MOS (MTO), tiristor abierto por emisor (ETO), tiristor conmutado porcompuerta integrada (IGCT), tiristor controlado por MOS (MCT).
3.- ¿La corriente mínima de entrada para activar un SCR ó TRIAC se llama?
R=Corriente de enganche
4.- ¿Cuáles son las condiciones para que conduzca un tiristor?
R=El ánodo tiene que tener mayor potencial que el cátodo.
5.- ¿Cómo se puede abrir un tiristor?
5.- ¿Cómo se puede abrir un tiristor?
R=Con una conmutación por línea o forzada.
6.- ¿Cuál es la diferencia entre un tiristor y un TRIAC ?
R=Que el tiristor es unidireccional y el TRIAC es bidireccional.
7.- ¿Un tiristor se utiliza como?
R= Para pasar plenamente o bloquear por completo el paso de la corriente sin tener nivel intermedio alguno, aunque no son capaces de soportar grandes sobrecargas de corriente.
8.- ¿Como se activa un tiristor?
R= Cuando se incrementa la corriente del ánodo
9.- ¿Cual es la aplicación principal de un transistor SCR?
R= En las aplicaciones de control de potencia